Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(7): 3572-3588, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38261978

RESUMO

The phytohormone salicylic acid (SA) triggers transcriptional reprogramming that leads to SA-induced immunity in plants. NPR1 is an SA receptor and master transcriptional regulator in SA-triggered transcriptional reprogramming. Despite the indispensable role of NPR1, genome-wide direct targets of NPR1 specific to SA signaling have not been identified. Here, we report INA (functional SA analog)-specific genome-wide targets of Arabidopsis NPR1 in plants expressing GFP-fused NPR1 under its native promoter. Analyses of NPR1-dependently expressed direct NPR1 targets revealed that NPR1 primarily activates genes encoding transcription factors upon INA treatment, triggering transcriptional cascades required for INA-induced transcriptional reprogramming and immunity. We identified genome-wide targets of a histone acetyltransferase, HAC1, including hundreds of co-targets shared with NPR1, and showed that NPR1 and HAC1 regulate INA-induced histone acetylation and expression of a subset of the co-targets. Genomic NPR1 targeting was principally mediated by TGACG-motif binding protein (TGA) transcription factors. Furthermore, a group of NPR1 targets mostly encoding transcriptional regulators was already bound to NPR1 in the basal state and showed more rapid and robust induction than other NPR1 targets upon SA signaling. Thus, our study unveils genome-wide NPR1 targeting, its role in transcriptional reprogramming, and the cooperativity between NPR1, HAC1, and TGAs in INA-induced immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arseniato Redutases , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Ácido Salicílico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Histonas/metabolismo , Histonas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Acetilação , Transdução de Sinais/genética , Regiões Promotoras Genéticas
2.
Plant J ; 114(1): 110-123, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36710626

RESUMO

As sessile organisms, plants encounter dynamic and challenging environments daily, including abiotic/biotic stresses. The regulation of carbon and nitrogen allocations for the synthesis of plant proteins, carbohydrates, and lipids is fundamental for plant growth and adaption to its surroundings. Light, one of the essential environmental signals, exerts a substantial impact on plant metabolism and resource partitioning (i.e., starch). However, it is not fully understood how light signaling affects carbohydrate production and allocation in plant growth and development. An orphan gene unique to Arabidopsis thaliana, named QUA-QUINE STARCH (QQS) is involved in the metabolic processes for partitioning of carbon and nitrogen among proteins and carbohydrates, thus influencing leaf, seed composition, and plant defense in Arabidopsis. In this study, we show that PHYTOCHROME-INTERACTING bHLH TRANSCRIPTION FACTORS (PIFs), including PIF4, are required to suppress QQS during the period at dawn, thus preventing overconsumption of starch reserves. QQS expression is significantly de-repressed in pif4 and pifQ, while repressed by overexpression of PIF4, suggesting that PIF4 and its close homologs (PIF1, PIF3, and PIF5) act as negative regulators of QQS expression. In addition, we show that the evening complex, including ELF3 is required for active expression of QQS, thus playing a positive role in starch catabolism during night-time. Furthermore, QQS is epigenetically suppressed by DNA methylation machinery, whereas histone H3 K4 methyltransferases (e.g., ATX1, ATX2, and ATXR7) and H3 acetyltransferases (e.g., HAC1 and HAC5) are involved in the expression of QQS. This study demonstrates that PIF light signaling factors help plants utilize optimal amounts of starch during the night and prevent overconsumption of starch before its biosynthesis during the upcoming day.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fitocromo/metabolismo , Amido/metabolismo , Carbono/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Nitrogênio/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Arseniato Redutases/genética , Arseniato Redutases/metabolismo
3.
Sci Total Environ ; 856(Pt 1): 158944, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36152867

RESUMO

Arsenic (As) has become natural health hazard for millions of people across the world due to its distribution in the food chain. Naturally, it is present in different oxidative states of inorganic [As(V) and As(III)] and organic (DMA, MMA and TMA) forms. Among different mitigation approaches, microbe mediated mitigation of As toxicity is an effective and eco-friendly approach. The present study involves the characterization of bacterial strains containing arsenite methyltransferase (Pseudomonas oleovorans, B4.10); arsenate reductase (Sphingobacterium puteale, B4.22) and arsenite oxidase (Citrobacter sp., B5.12) activity with plant growth promoting (PGP) traits. Efficient reduction of grain As content by 61 % was observed due to inoculation of methyltransferase containing B4.10 as compared to B4.22 (47 %) and B5.12 (49 %). Reduced bioaccumulation of As in root (0.339) and shoot (0.166) in presence of B4.10 was found to be inversely related with translocation factor for Mn (3.28), Fe (0.073), and Se (1.82). Bioaccumulation of these micro elements was found to be associated with the modulated expression of different mineral transporters (OsIRT2, OsFRO2, OsTOM1, OsSultr4;1, and OsZIP2) in rice shoot. Improved dehydrogenase (407 %), and ß-glucosidase (97 %) activity in presence of P. oleovorans (B4.10) as compared to arsenate reductase (198 and 50 %), and arsenite oxidase (134 and 69 %) containing bacteria was also observed. Our finding confers the potential of methyltransferase positive P. oleovorans (B4.10) for As stress amelioration. Reduced grain As uptake was found to be mediated by improved plant growth and nutrient uptake associated with enhanced soil microbial activity.


Assuntos
Arsênio , Arsenicais , Arsenitos , Oryza , Pseudomonas oleovorans , Humanos , Arsênio/toxicidade , Arsênio/metabolismo , Arseniato Redutases/metabolismo , Pseudomonas oleovorans/metabolismo , Raízes de Plantas/metabolismo , Grão Comestível/metabolismo , Arsenicais/metabolismo , Metiltransferases , Arsenitos/metabolismo
4.
Environ Sci Technol ; 56(20): 14808-14816, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36201672

RESUMO

A hydrogen-based membrane biofilm reactor (H2-MBfR) was operated to investigate the bioreduction of antimonate [Sb(V)] in terms of Sb(V) removal, the fate of Sb, and the pathways of reduction metabolism. The MBfR achieved up to 80% Sb(V) removal and an Sb(V) removal flux of 0.55 g/m2·day. Sb(V) was reduced to Sb(III), which mainly formed Sb2O3 precipitates in the biofilm matrix, although some Sb(III) was retained intracellularly. High Sb(V) loading caused stress that deteriorated performance that was not recovered when the high Sb(V) loading was removed. The biofilm community consisted of DSbRB (dissimilatory Sb-reduction bacteria), SbRB (Sb-resistant bacteria), and DIRB (dissimilatory iron-reducing bacteria). Dissimilatory antimonate reduction, mediated by the respiratory arsenate reductase ArrAB, was the main reduction route, but respiratory reduction coexisted with cytoplasmic Sb(V)-reduction mediated by arsenate reductase ArsC. Increasing Sb(V) loading caused stress that led to increases in the expression of arsC gene and intracellular accumulation of Sb(III). By illuminating the roles of the dissimilatory and cytoplasmic Sb(V) reduction mechanism in the biofilms of the H2-MBfR, this study reveals that the Sb(V) loading should be controlled to avoid stress that deteriorates Sb(V) reduction.


Assuntos
Arseniato Redutases , Hidrogênio , Bactérias/genética , Biofilmes , Reatores Biológicos/microbiologia , Ferro
5.
Environ Sci Technol ; 56(19): 14146-14153, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36121644

RESUMO

Selenate enhances arsenic (As) accumulation in As-hyperaccumulator Pteris vittata, but the associated molecular mechanisms are unclear. Here, we investigated the mechanisms of selenate-induced arsenic accumulation by exposing P. vittata to 50 µM arsenate (AsV50) and 1.25 (Se1.25) or 5 µM (Se5) selenate in hydroponics. After 2 weeks, plant biomass, plant As and Se contents, As speciation in plant and growth media, and important genes related to As detoxification in P. vittata were determined. These genes included P transporters PvPht1;3 and PvPht1;4 (AsV uptake), arsenate reductases PvHAC1 and PvHAC2 (AsV reduction), and arsenite (AsIII) antiporters PvACR3 and PvACR3;2 (AsIII translocation) in the roots, and AsIII antiporters PvACR3;1 and PvACR3;3 (AsIII sequestration) in the fronds. The results show that Se1.25 was more effective than Se5 in increasing As accumulation in both P. vittata roots and fronds, which increased by 27 and 153% to 353 and 506 mg kg-1. The As speciation analyses show that selenate increased the AsIII levels in P. vittata, with 124-282% more AsIII being translocated into the fronds. The qPCR analyses indicate that Se1.25 upregulated the gene expression of PvHAC1 by 1.2-fold, and PvACR3 and PvACR3;2 by 1.0- to 2.5-fold in the roots, and PvACR3;1 and PvACR3;3 by 0.6- to 1.1-fold in the fronds under AsV50 treatment. Though arsenate enhanced gene expression of P transporters PvPht1;3 and PvPht1;4, selenate had little effect. Our results indicate that selenate effectively increased As accumulation in P. vittata, mostly by increasing reduction of AsV to AsIII in the roots, AsIII translocation from the roots to fronds, and AsIII sequestration into the vacuoles in the fronds. The results suggest that selenate may be used to enhance phytoremediation of As-contaminated soils using P. vittata.


Assuntos
Arsênio , Arsenitos , Pteris , Selênio , Poluentes do Solo , Antiporters/metabolismo , Antiporters/farmacologia , Arseniato Redutases/genética , Arseniato Redutases/metabolismo , Arseniatos , Arsênio/metabolismo , Arsenitos/metabolismo , Biodegradação Ambiental , Raízes de Plantas/metabolismo , Pteris/genética , Pteris/metabolismo , Ácido Selênico , Selênio/metabolismo , Solo , Poluentes do Solo/metabolismo
6.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142359

RESUMO

Histone acetyltransferases (HATs) are involved in the epigenetic positive control of gene expression in eukaryotes. CREB-binding proteins (CBP)/p300, a subfamily of highly conserved HATs, have been shown to function as acetylases on both histones and non-histone proteins. In the model plant Arabidopsis thaliana among the five CBP/p300 HATs, HAC1, HAC5 and HAC12 have been shown to be involved in the ethylene signaling pathway. In addition, HAC1 and HAC5 interact and cooperate with the Mediator complex, as in humans. Therefore, it is potentially difficult to discriminate the effect on plant development of the enzymatic activity with respect to their Mediator-related function. Taking advantage of the homology of the human HAC catalytic domain with that of the Arabidopsis, we set-up a phenotypic assay based on the hypocotyl length of Arabidopsis dark-grown seedlings to evaluate the effects of a compound previously described as human p300/CBP inhibitor, and to screen previously described cinnamoyl derivatives as well as newly synthesized analogues. We selected the most effective compounds, and we demonstrated their efficacy at phenotypic and molecular level. The in vitro inhibition of the enzymatic activity proved the specificity of the inhibitor on the catalytic domain of HAC1, thus substantiating this strategy as a useful tool in plant epigenetic studies.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Acetilação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arseniato Redutases/metabolismo , Proteína de Ligação a CREB/metabolismo , Etilenos/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Humanos , Complexo Mediador/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
7.
Environ Pollut ; 309: 119825, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35870529

RESUMO

Rice growing in flooded paddy soil often accumulates considerable levels of inorganic and organic arsenic (As) species, which may cause toxicity to plants and/or pose a risk to human health. The bioavailability and toxicity of As in soil depends on its chemical species, which undergo multiple transformations driven primarily by soil microbes. However, the role of endophytes inside rice roots in As species transformation remains largely unknown. We quantified the abundances of microbial functional genes involved in As transformation in the endosphere and rhizosphere of rice roots growing in three paddy soils in a pot experiment. We also isolated 46 different bacterial endophytes and tested their abilities to transform various As species. The absolute abundances of the arsenate reductase gene arsC and the dissimilatory arsenate reductase gene arrA in the endosphere were comparable to those in the rhizosphere, whereas the absolute abundances of the arsenite methylation gene arsM and arsenite oxidation gene aioA in the endosphere were lower. After normalization based on the bacterial 16S rRNA gene, all four As transformation genes showed higher relative abundances in the endosphere than in the rhizosphere. Consistent with the functional gene data, all of the 30 aerobic endophytic isolates were able to reduce arsenate, but only 3 strains could oxidize arsenite. Among the 16 anaerobic endophytic isolates, 4 strains belonging to Desulfovibrio, Terrisporobacter or Clostridium could methylate arsenite and/or methylarsenite. Six strains of aerobic endophytes could demethylate methylarsenite, among which three strains also could reduce and demethylate methylarsenate. None of the isolates could demethylate dimethylarsenate. These results suggest that diverse endophytes living inside rice roots could participate in As species transformation and affect As accumulation and species distribution in rice plants.


Assuntos
Arsênio , Arsenitos , Oryza , Poluentes do Solo , Arseniato Redutases/genética , Arsênio/análise , Bactérias/genética , Endófitos , Humanos , Oryza/microbiologia , Raízes de Plantas/química , RNA Ribossômico 16S/genética , Solo , Poluentes do Solo/análise
8.
Int J Mol Sci ; 23(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35328363

RESUMO

Arsenic (As) pollution is a widespread problem worldwide. In recent years, biosensors based on enzymatic inhibition have been developed for arsenic detection, making the study of the effect of inhibitors on the selected enzymatic activity crucial for their setup. The arsenate reductase of Thermus thermophilus HB27, TtArsC, reduces As(V) into As(III), but is also endowed with phosphatase activity. This work investigates the inhibitory effects of As(V) and As(III) on phosphatase activity by taking advantage of a simple colorimetric assay; the results show that both of them are non-competitive inhibitors affecting the Vmax but not the KM of the reaction. However, their Ki values are different from each other (15.2 ± 1.6 µM for As(V) and 394.4 ± 40.3 µm with As(III)), indicating a higher inhibitory effect by As(V). Moreover, the inhibition-based biosystem results to be selective for As(V) since several other metal ions and salts do not affect TtArsC phosphatase activity; it exhibits a sensitivity of 0.53 ± 0.03 mU/mg/µM and a limit of detection (LOD) of 0.28 ± 0.02 µM. The good sensitivity and specificity for As(V) point to consider inhibition of TtArsC phosphatase activity for the setup of a novel biosensor for the detection of As(V).


Assuntos
Arsênio , Técnicas Biossensoriais , Arseniato Redutases , Monoéster Fosfórico Hidrolases , Thermus thermophilus
9.
Plant Physiol ; 189(2): 922-933, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35201346

RESUMO

Plants perceive volatiles emitted from herbivore-damaged neighboring plants to urgently adapt or prime their defense responses to prepare for forthcoming herbivores. Mechanistically, these volatiles can induce epigenetic regulation based on histone modifications that alter the transcriptional status of defense genes, but little is known about the underlying mechanisms. To understand the roles of such epigenetic regulation of plant volatile signaling, we explored the response of Arabidopsis (Arabidopsis thaliana) plants to the volatile ß-ocimene. Defense traits of Arabidopsis plants toward larvae of Spodoptera litura were induced in response to ß-ocimene, through enriched histone acetylation and elevated transcriptional levels of defense gene regulators, including ethylene response factor genes (ERF8 and ERF104) in leaves. The enhanced defense ability of the plants was maintained for 5 d but not over 10 d after exposure to ß-ocimene, and this coincided with elevated expression of those ERFs in their leaves. An array of histone acetyltransferases, including HAC1, HAC5, and HAM1, were responsible for the induction and maintenance of the anti-herbivore property. HDA6, a histone deacetylase, played a role in the reverse histone remodeling. Collectively, our findings illuminate the role of epigenetic regulation in plant volatile signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Compostos Orgânicos Voláteis , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arseniato Redutases/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Herbivoria , Histona Desacetilases/metabolismo , Histonas/metabolismo , Plantas/metabolismo , Spodoptera/fisiologia , Compostos Orgânicos Voláteis/metabolismo
10.
Chemosphere ; 292: 133399, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34952019

RESUMO

Arsenic (As) contamination in an ecosystem has been a serious threat for the ecosystem as well as human health. Thus, the present study was established an eco-friendly remediation of As by using As resistant Rhodobacter sp. Accordingly, the growth of Rhodobacter sp. in As stress environment was assessed. Expectedly, enhanced growth order of the Rhodobacter sp., under As stress was found to be control >50 > 100 > 200 > 300 > 400 > 500 mg/L of As. In addition, the present study explored the influence of various light sources (Yellow, light blue, red, green and white) on growth and As removal mechanisms of Rhodobacter sp. The growth profile of the bacteria indicated that the light blue source showed an enhanced growth at 72 h of incubation. Based on optimization experiments, an increased As removal percentage rate was found to be at 87.5% at pH 7.0, 3% of glucose, 1% of citrate supplemented in the medium. The As resistant genetic pattern for arsenic transformation, the genes arsenate reductase (arsC), arsenite oxidase (aio) was investigated. To study the transcript level expression of arsC and aio genes were performed after exposure to different concentrations of As (50, 100, 150, and 200 mg/L) at different time intervals (24, 48, 72 and 96 h). The results showed that both arsC and aio were up regulated from 24 to 72 h and the down regulation was observed at 96 h. The obtained results indicated that the Rhodobacter sp., possess significant AS tolerance and removal potential would make it is a noteworthy candidate for future As remediation practices.


Assuntos
Arsênio , Rhodobacter , Arseniato Redutases , Ecossistema , Humanos , Fotossíntese
11.
Arch Microbiol ; 204(1): 46, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34932145

RESUMO

The present study characterized aresenate reductase of Bacillus thuringiensis KPWP1, tolerant to salt, arsenate and a wide range of pH during growth. Interestingly, it was found that arsC, arsB and arsR genes involved in arsenate tolerance are distributed in the genome of strain KPWP1. The inducible arsC gene was cloned, expressed and the purified ArsC protein showed profound enzyme activity with the KM and Kcat values as 25 µM and 0.00119 s-1, respectively. In silico studies revealed that in spite of 19-26% differences in gene sequences, the ArsC proteins of Bacillus thuringiensis, Bacillus subtilis and Bacillus cereus are structurally conserved and ArsC structure of strain KPWP1 is close to nature. Docking and analysis of the binding site showed that arsenate ion interacts with three cysteine residues of ArsC and predicts that the ArsC from B. thuringiensis KPWP1 reduces arsenate by using the triple Cys redox relay mechanism.


Assuntos
Arseniato Redutases , Bacillus thuringiensis , Arseniato Redutases/genética , Arseniatos , Arsênio , Bacillus cereus , Bacillus subtilis , Bacillus thuringiensis/enzimologia , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Concentração de Íons de Hidrogênio , Tolerância ao Sal
12.
Ecotoxicol Environ Saf ; 221: 112415, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34171691

RESUMO

In order to understand the mechanisms of arsenic (As) accumulation and detoxification in aquatic plants exposed to different As species, a hydroponic experiment was conducted and the three aquatic plants (Hydrilla verticillata, Pistia stratiotes and Eichhornia crassipes) were exposed to different concentrations of As(III), As(V) and dimethylarsinate (DMA) for 10 days. The biomass, the surface As adsorption and total As adsorption of three plants were determined. Furthermore, As speciation in the culture solution and plant body, as well as the arsenate reductase (AR) activities of roots and shoots, were also analyzed. The results showed that the surface As adsorption of plants was far less than total As absorption. Compared to As(V), the plants showed a lower DMA accumulation. P. stratiotes showed the highest accumulation of inorganic arsenic but E. crassipes showed the lowest at the same As treatment. E. crassipes showed a strong ability to accumulate DMA. Results from As speciation analysis in culture solution showed that As(III) was transformed to As(V) in all As(III) treatments, and the oxidation rates followed as the sequence of H. verticillata>P. stratiotes>E. crassipes>no plant. As(III) was the predominant species in both roots (39.4-88.3%) and shoots (39-86%) of As(III)-exposed plants. As(V) and As(III) were the predominant species in roots (37-94%) and shoots (31.1-85.6%) in As(V)-exposed plants, respectively. DMA was the predominant species in both roots (23.46-100%) and shoots (72.6-100%) in DMA-exposed plants. The As(III) contents and AR activities in the roots of P. stratiotes and in the shoots of H. verticillata were significantly increased when exposed to 1 mg·L-1 or 3 mg·L-1 As(V). Therefore, As accumulation mainly occurred via biological uptake rather than physicochemical adsorption, and AR played an important role in As detoxification in aquatic plants. In the case of As(V)-exposed plants, their As tolerance was attributed to the increase of AR activities.


Assuntos
Araceae , Arseniato Redutases/metabolismo , Arsênio , Ácido Cacodílico , Eichhornia , Hydrocharitaceae , Proteínas de Plantas/metabolismo , Poluentes Químicos da Água , Adsorção , Araceae/química , Araceae/metabolismo , Arsênio/química , Arsênio/metabolismo , Ácido Cacodílico/química , Ácido Cacodílico/metabolismo , Eichhornia/química , Eichhornia/metabolismo , Hydrocharitaceae/química , Hydrocharitaceae/metabolismo , Hidroponia , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Brotos de Planta/química , Brotos de Planta/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
13.
Sci Rep ; 11(1): 6794, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762609

RESUMO

This study evaluated the phytoextraction capacity of the fern Pteris vittata grown on a natural arsenic-rich soil of volcanic-origin from the Viterbo area in central Italy. This calcareous soil is characterized by an average arsenic concentration of 750 mg kg-1, of which 28% is bioavailable. By means of micro-energy dispersive X-ray fluorescence spectrometry (µ-XRF) we detected As in P. vittata fronds after just 10 days of growth, while a high As concentrations in fronds (5,000 mg kg-1), determined by Inductively coupled plasma-optical emission spectrometry (ICP-OES), was reached after 5.5 months. Sixteen arsenate-tolerant bacterial strains were isolated from the P. vittata rhizosphere, a majority of which belong to the Bacillus genus, and of this majority only two have been previously associated with As. Six bacterial isolates were highly As-resistant (> 100 mM) two of which, homologous to Paenarthrobacter ureafaciens and Beijerinckia fluminensis, produced a high amount of IAA and siderophores and have never been isolated from P. vittata roots. Furthermore, five isolates contained the arsenate reductase gene (arsC). We conclude that P. vittata can efficiently phytoextract As when grown on this natural As-rich soil and a consortium of bacteria, largely different from that usually found in As-polluted soils, has been found in P. vittata rhizosphere.


Assuntos
Arsênio/análise , Beijerinckiaceae/metabolismo , Micrococcaceae/metabolismo , Pteris/química , Solo/química , Arseniato Redutases/genética , Arseniato Redutases/metabolismo , Arsênio/metabolismo , Arsênio/toxicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Beijerinckiaceae/química , Beijerinckiaceae/isolamento & purificação , Biodegradação Ambiental , Farmacorresistência Bacteriana/genética , Micrococcaceae/química , Micrococcaceae/isolamento & purificação , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Pteris/metabolismo , Pteris/microbiologia , Rizosfera , Sideróforos/análise , Sideróforos/metabolismo , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Espectrofotometria Atômica
14.
Biochemistry ; 60(6): 465-476, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33538578

RESUMO

The anaerobic bacterium Chrysiogenes arsenatis respires using the oxyanion arsenate (AsO43-) as the terminal electron acceptor, where it is reduced to arsenite (AsO33-) while concomitantly oxidizing various organic (e.g., acetate) electron donors. This respiratory activity is catalyzed in the periplasm of the bacterium by the enzyme arsenate reductase (Arr), with expression of the enzyme controlled by a sensor histidine kinase (ArrS) and a periplasmic-binding protein (PBP), ArrX. Here, we report for the first time, the molecular structure of ArrX in the absence and presence of bound ligand arsenate. Comparison of the ligand-bound structure of ArrX with other PBPs shows a high level of conservation of critical residues for ligand binding by these proteins; however, this suite of PBPs shows different structural alterations upon ligand binding. For ArrX and its homologue AioX (from Rhizobium sp. str. NT-26), which specifically binds arsenite, the structures of the substrate-binding sites in the vicinity of a conserved and critical cysteine residue contribute to the discrimination of binding for these chemically similar ligands.


Assuntos
Arseniato Redutases/química , Bactérias/metabolismo , Sequência de Aminoácidos/genética , Arseniato Redutases/metabolismo , Arseniatos/química , Arseniatos/metabolismo , Bactérias/química , Composição de Bases/genética , Sítios de Ligação , Catálise , Cristalografia por Raios X/métodos , Histidina Quinase/metabolismo , Oxirredutases/metabolismo , Periplasma/metabolismo , Proteínas Periplásmicas de Ligação/química , Proteínas Periplásmicas de Ligação/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos
15.
Sci Rep ; 11(1): 2991, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542380

RESUMO

The correct immobilization and orientation of enzymes on nanosurfaces is a crucial step either for the realization of biosensors, as well as to guarantee the efficacy of the developed biomaterials. In this work we produced two versions of a chimeric protein, namely ArsC-Vmh2 and Vmh2-ArsC, which combined the self-assembling properties of Vmh2, a hydrophobin from Pleurotus ostreatus, with that of TtArsC, a thermophilic arsenate reductase from Thermus thermophilus; both chimeras were heterologously expressed in Escherichia coli and purified from inclusion bodies. They were characterized for their enzymatic capability to reduce As(V) into As(III), as well as for their immobilization properties on polystyrene and gold in comparison to the native TtArsC. The chimeric proteins immobilized on polystyrene can be reused up to three times and stored for 15 days with 50% of activity loss. Immobilization on gold electrodes showed that both chimeras follow a classic Langmuir isotherm model towards As(III) recognition, with an association constant (KAsIII) between As(III) and the immobilized enzyme, equal to 650 (± 100) L mol-1 for ArsC-Vmh2 and to 1200 (± 300) L mol-1 for Vmh2-ArsC. The results demonstrate that gold-immobilized ArsC-Vmh2 and Vmh2-ArsC can be exploited as electrochemical biosensors to detect As(III).


Assuntos
Arseniato Redutases/química , Arsênio/isolamento & purificação , Técnicas Biossensoriais , Proteínas Fúngicas/química , Proteínas Recombinantes de Fusão/química , Arsênio/toxicidade , Enzimas Imobilizadas/química , Escherichia coli/genética , Humanos , Pleurotus/química , Pleurotus/enzimologia , Thermus thermophilus/enzimologia
16.
J Exp Bot ; 72(2): 415-425, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33038235

RESUMO

High Arsenic Concentration 1 (HAC1), an Arabidopsis thaliana arsenate reductase, plays a key role in arsenate [As(V)] tolerance. Through conversion of As(V) to arsenite [As(III)], HAC1 enables As(III) export from roots, and restricts translocation of As(V) to shoots. To probe the ability of different root tissues to detoxify As(III) produced by HAC1, we generated A. thaliana lines expressing HAC1 in different cell types. We investigated the As(V) tolerance phenotypes: root growth, As(III) efflux, As translocation, and As chemical speciation. We showed that HAC1 can function in the outer tissues of the root (epidermis, cortex, and endodermis) to confer As(V) tolerance, As(III) efflux, and limit As accumulation in shoots. HAC1 is less effective in the stele at conferring As(V) tolerance phenotypes. The exception is HAC1 activity in the protoxylem, which we found to be sufficient to restrict As translocation, but not to confer As(V) tolerance. In conclusion, we describe cell type-specific functions of HAC1 that spatially separate the control of As(V) tolerance and As translocation. Further, we identify a key function of protoxylem cells in As(V) translocation, consistent with the model where endodermal passage cells, above protoxylem pericycle cells, form a 'funnel' loading nutrients and potentially toxic elements into the vasculature.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arsênio , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Arseniato Redutases , Arseniatos , Raízes de Plantas/genética , Brotos de Planta
17.
J Integr Plant Biol ; 63(4): 755-771, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33325122

RESUMO

In eukaryotes, MEDIATOR is a conserved multi-subunit complex that links transcription factors and RNA polymerase II and that thereby facilitates transcriptional initiation. Although the composition of MEDIATOR has been well studied in yeast and mammals, relatively little is known about the composition of MEDIATOR in plants. By affinity purification followed by mass spectrometry, we identified 28 conserved MEDIATOR subunits in Arabidopsis thaliana, including putative MEDIATOR subunits that were not previously validated. Our results indicated that MED34, MED35, MED36, and MED37 are not Arabidopsis MEDIATOR subunits, as previously proposed. Our results also revealed that two homologous CBP/p300 histone acetyltransferases, HAC1 and HAC5 (HAC1/5) are in fact plant-specific MEDIATOR subunits. The MEDIATOR subunits MED8 and MED25 (MED8/25) are partially responsible for the association of MEDIATOR with HAC1/5, MED8/25 and HAC1/5 co-regulate gene expression and thereby affect flowering time and floral development. Our in vitro observations indicated that MED8 and HAC1 form liquid-like droplets by phase separation, and our in vivo observations indicated that these droplets co-localize in the nuclear bodies at a subset of nuclei. The formation of liquid-like droplets is required for MED8 to interact with RNA polymerase II. In summary, we have identified all of the components of Arabidopsis MEDIATOR and revealed the mechanism underlying the link of histone acetylation and transcriptional regulation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Arseniato Redutases/genética , Arseniato Redutases/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Histonas/genética , Histonas/metabolismo , Complexo Mediador/genética , Complexo Mediador/metabolismo , Plantas Geneticamente Modificadas/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
18.
Appl Biochem Biotechnol ; 193(1): 1-18, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32809107

RESUMO

The arsC gene-encoded arsenate reductase is a vital catalytic enzyme for remediation of environmental arsenic (As). Microorganisms containing the arsC gene can convert pentavalent arsenate (As[V]) to trivalent arsenite (As[III]) to be either retained in the bacterial cell or released into the air. The molecular mechanism governing this process is unknown. Here we present an in silico model of the enzyme to describe their probable active site cavities using SCFBio servers. We retrieved the amino acid sequence of bacterial arsenate reductase enzymes in FASTA format from the NCBI database. Enzyme structure was predicted using the I-TASSER server and visualized using PyMOL tools. The ProSA and the PROCHECK servers were used to evaluate the overall significance of the predicted model. Accordingly, arsenate reductase from Streptococcus pyogenes, Oligotropha carboxidovorans OM5, Rhodopirellula baltica SH 1, and Serratia ureilytica had the highest quality scores with statistical significance. The plausible cavities of the active site were identified in our examined arsenate reductase enzymes which were abundant in glutamate and lysine residues with 6 to 16 amino acids. This in silico experiment may contribute greatly to the remediation of arsenic pollution through the utilization of microbial species.


Assuntos
Arseniato Redutases/química , Bactérias/enzimologia , Proteínas de Bactérias/química , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Domínio Catalítico
19.
Biochemistry ; 59(44): 4262-4284, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33135415

RESUMO

Arsenate reductase (ArsC) is a superfamily of enzymes that reduce arsenate. Due to active site similarities, some ArsC can function as low-molecular weight protein tyrosine phosphatases (LMW-PTPs). Broad superfamily classifications align with redox partners (Trx- or Grx-linked). To understand this superfamily's mechanistic diversity, the ArsC superfamily is classified on the basis of active site features utilizing the tools TuLIP (two-level iterative clustering process) and autoMISST (automated multilevel iterative sequence searching technique). This approach identified nine functionally relevant (perhaps isofunctional) protein groups. Five groups exhibit distinct ArsC mechanisms. Three are Grx-linked: group 4AA (classical ArsC), group 3AAA (YffB-like), and group 5BAA. Two are Trx-linked: groups 6AAAAA and 7AAAAAAAA. One is an Spx-like transcriptional regulatory group, group 5AAA. Three are potential LMW-PTP groups: groups 7BAAAA, and 7AAAABAA, which have not been previously identified, and the well-studied LMW-PTP family group 8AAA. Molecular dynamics simulations were utilized to explore functional site details. In several families, we confirm and add detail to literature-based mechanistic information. Mechanistic roles are hypothesized for conserved active site residues in several families. In three families, simulations of the unliganded structure sample specific conformational ensembles, which are proposed to represent either a more ligand-binding-competent conformation or a pathway toward a more binding-competent state; these active sites may be designed to traverse high-energy barriers to the lower-energy conformations necessary to more readily bind ligands. This more detailed biochemical understanding of ArsC and ArsC-like PTP mechanisms opens possibilities for further understanding of arsenate bioremediation and the LMW-PTP mechanism.


Assuntos
Arseniato Redutases/química , Biologia Computacional , Sequência de Aminoácidos , Domínio Catalítico , Simulação de Dinâmica Molecular , Alinhamento de Sequência
20.
Environ Sci Technol ; 54(21): 14107-14113, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33054201

RESUMO

Microbial antimonate [Sb(V)] respiratory reduction is an important process regulating Sb redox transformation in the environment. However, little is known about the microbial respiratory reductase for Sb(V). Herein, we report Sb(V)-respiring reduction by Shewanella sp. ANA-3 through an arsenate respiratory reductase encoded by arrAB. Incubation experiments showed that Shewanella sp. ANA-3 mediated Sb(V)-respiring reduction, which was dependent on the cell concentration. Both protein analysis and reverse transcriptase-polymerase chain reaction results revealed that arrAB was highly expressed in Sb(V)-respiring reduction. In vivo evidence with mutants indicated that neither ANA-3-ΔarrA nor ANA-3-ΔarrB was capable of reducing Sb(V) as efficiently as the wild type, whereas complementation by the wild-type sequences of arrA and arrB rescued the mutants' ability. Our in vitro results showed that ArrAB purified by His-Tag was able to mediate Sb(V) reduction, though with much suppressed catalytic kinetics compared with As(V) reduction. The cell-concentration-dependent reduction of Sb(V) was regulated by quorum sensing via the luxS gene. This study opens a new chapter in the mechanistic understanding of microbial Sb(V) respiratory reduction.


Assuntos
Shewanella , Arseniato Redutases , Proteínas de Bactérias/metabolismo , Oxirredução , Oxirredutases/metabolismo , Shewanella/genética , Shewanella/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...